Lecture 11 & 12: Sigma Fields and Martingales

Disclaimer

- This is a very informal treatment of the concept of Martingales
- In particular, the intuitions are specific to discrete-time martingales and discrete spaces
- Interested readers are referred to study σ -algebras for a more formal treatment of this material

In today's lecture

- We shall introduce the concept of Martingales
- We shall study Discrete-time Martingales over Discrete Spaces
- Specifically, we shall study Doob's martingale
- In the next lecture, we shall study Azuma's inequality

σ -Field

Let Ω be a (discrete) sample space with probability distribution p. That is, for any $x \in \Omega$, the value p(x) represents the probability associated with the element x. We shall think of $p: \Omega \to \mathbb{R}$ as a function

Definition

A σ -field $\mathcal F$ on Ω is a collection of subsets of Ω such that the following constraints are satisfied.

- $oldsymbol{0}$ \mathcal{F} contains \emptyset and Ω , and
- $oldsymbol{2}$ $\mathcal F$ is closed under union, intersection, and complementation.

Example σ -Fields

- $\mathcal{F}_0 = \{\emptyset, \Omega\}$ is a σ -field
- Suppose $\Omega = \{0,1\}^n$
- Let $\mathcal{F}_1 = \mathcal{F}_0 \cup \left\{\{0\} \times \{0,1\}^{n-1}, \{1\} \times \{0,1\}^{n-1}\right\}$. Note that \mathcal{F}_1 is also a σ -field. In general, we can write \mathcal{F}_1 as the following set

$$\left\{S\times\{0,1\}^{n-1}\colon S\subseteq\{0,1\}\right\}$$

We are using the convention that is $S = \emptyset$, then $S \times \{0,1\}^{n-1} = \emptyset$.

- Let $\mathcal{F}_2 = \left\{ S \times \{0,1\}^{n-2} \colon S \subseteq \{0,1\}^2 \right\}$. Note that \mathcal{F}_2 has 16 elements, and $\mathcal{F}_1 \subset \mathcal{F}_2$. It is easy to verify that \mathcal{F}_2 is a σ -field.
- In general, consider the following σ -field, for $0 \le k \le n$.

$$\mathcal{F}_k = \left\{ S \times \{0,1\}^{n-k} \colon S \subseteq \{0,1\}^k \right\}$$

Smallest Set containing any Element

- Let $x \in \Omega$
- Consider a σ -field $\mathcal F$ on Ω
- The smallest set in \mathcal{F} containing x, represented by $\mathcal{F}(x)$, is the intersection of all sets in \mathcal{F} that contain x. Formally, it is the following set

$$\mathcal{F}(x) := \bigcap_{S \in \mathcal{F}: \ x \in S} S$$

• For example, let n=5, x=01001, and consider the σ -field \mathcal{F}_2 on Ω . In this case, the smallest set $\mathcal{F}_2(x)$ in \mathcal{F}_2 that contains x is $\{01\} \times \{0,1\}^{n-2}$.

\mathcal{F} -Measurable

• Let $f: \Omega \to \mathbb{R}$ be an arbitrary function

Definition (\mathcal{F} -Measurable)

The function f is \mathcal{F} -measurable if, for all $x \in \Omega$ and $y \in \mathcal{F}(x)$, we have f(x) = f(y), where $\mathcal{F}(x)$ represents the smallest subset in \mathcal{F} containing x

- Intuitively, the function f is constant over all the elements of $\mathcal{F}(x)$, for any $x \in \Omega$
- For example, let n=5 and consider the σ -field \mathcal{F}_2 on Ω
- As we have seen, we have $\mathcal{F}_2(x) = \{x_1x_2\} \times \{0,1\}^{n-2}$, where x_1 and x_2 are, respectively, the first and the second bits of x. That is, $\mathcal{F}_2(x)$ is the set of all n-bit strings that begin with x_1x_2 .
- Let f(x) be the total number of 1s in the first two coordinates of x. This function is \mathcal{F}_2 -measurable
- Let f(x) be the expected number of 1s over all strings whose first two bits are x_1x_2 . This function is also \mathcal{F}_2 -measurable
- Let f(x) be the total number of 1s in the first three bits of x. This function is not \mathcal{F}_2 -measurable, because x = 00000 and y = 00100 satisfy $y \in \mathcal{F}_2(x)$ but $f(x) \neq f(y)$

Conditional Expectation

- Let $p \colon \Omega \to \mathbb{R}$ be a probability distribution over the sample space Ω
- Let \mathcal{F} be a σ -field on Ω
- Let $f: \Omega \to \mathbb{R}$ be an arbitrary function
- We define the conditional expectation as a function $\mathbb{E}\left[f|\mathcal{F}\right]:\Omega \to \mathbb{R}$ defined as follows

$$\mathbb{E}\left[f|\mathcal{F}\right](x) := \frac{1}{\sum_{y \in \mathcal{F}(x)} p(y)} \sum_{y \in \mathcal{F}(x)} f(y) \cdot p(y)$$

- We emphasize that the function f need not be \mathcal{F} -measurable to define the expectation in this manner!
- Note that $\mathbb{E}\left[f|\mathcal{F}\right](x) = \mathbb{E}\left[f|\mathcal{F}\right](y)$, for all $y \in \mathcal{F}(x)$. That is, the function $\mathbb{E}\left[f|\mathcal{F}\right]$ is \mathcal{F} -measurable!

Filtration

Let Ω be a sample space with probability distribution p

Definition (Filtration)

A sequence of σ -fields $\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_n$ on Ω is a filtration if

$$\{\emptyset,\Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$$

Note that when $\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$, then the σ -fields \mathcal{F}_i on Ω defined below forms a filtration.

$$\mathcal{F}_i = \{S \times \Omega_{i+1} \times \cdots \times \Omega_n \colon S \subseteq \Omega_1 \times \cdots \times \Omega_i\}$$

Beginning of "Intuition Slides"

Sample Space

- As time progresses, new information about the sample is revealed to us
- ullet At time 1, we learn the value of ω_1 of the random variable \mathbb{X}_1
- At time 2, we learn the value of ω_2 of the random variable \mathbb{X}_2
- As so on. At time t, we learn the value of ω_t of the random variable \mathbb{X}_t
- By the end of time n, we know the value ω_n of the last random variable \mathbb{X}_n
- At this point, $f(X_1, ..., X_n)$ can be calculated, where $f: \Omega \to \mathbb{R}$ is a function that we are interested in

Examples

- Balls and Bins. At time i we find out the bin ω_i where the ball i lands
- Coin tosses. At time i we find out the outcome ω_i of the i-th coin toss
- Hypergeometric Series. At time i we find out the color ω_i of the i-th ball drawn from the jar (where sampling is being carried out without replacement)
- Bounded Difference Function. At time i we find out the outcome ω_i of the i-th variable of the input of the function f.

Filtration

- In a filtration, the σ -field \mathcal{F}_k represents the knowledge we have after knowing the outcomes $(\omega_1, \ldots, \omega_k)$
- For instance, the σ -field \mathcal{F}_0 on Ω represents "we know nothing about the sample"
- For instance, the σ -field \mathcal{F}_n on Ω represents "we know everything about the sample"
- In general, the σ -field \mathcal{F}_k on Ω represents "we know the first k coordinates of the sample"

Tree Representation

- Think of a rooted tree
- For every internal node, the outgoing edges represent the various possible outcomes in the next time step
- Leaves represent that the entire sample is already known
- The sequence of outcomes $(\omega_1, \ldots, \omega_n)$ represents a "root-to-leaf" path
- Consider a filtration $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$. The set $\mathcal{F}_k(x)$ corresponding to this root-to-leaf path is the depth-k node on this path

Measurable with respect to a σ -Field

- Consider a filtration $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$
- A function f being \mathcal{F}_k -measurable implies that f is constant over all leaves of the subtree rooted at $\mathcal{F}_k(x)$
- A random variable $\mathbb{F}_k = f(\mathbb{X}_1, \dots, \mathbb{X}_n)$ will be \mathcal{F}_k -measurable if the value of $f(\mathbb{X}_1, \dots, \mathbb{X}_n)$ depends only on $\mathbb{X}_1 = \omega_1, \dots, \mathbb{X}_k = \omega_k$

End of "Intuition Slides"

Martingales

Definition (Martingale Sequence)

Let $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$ be a filtration. The sequence $(\mathbb{F}_0, \mathbb{F}_1, \dots, \mathbb{F}_n)$ forms a martingale with respect to the filtration if

- ① \mathbb{F}_t is \mathcal{F}_t -measurable, for $0 \leqslant t \leqslant n$, and
- - Note that given $\mathcal{F}_t = (\omega_1, \omega_2, \dots, \omega_t)$, the value of \mathbb{F}_t is fixed. So, we can write $\mathbb{E}\left[\mathbb{F}_t \middle| \mathcal{F}_t\right](x)$ in short as $(\mathbb{F}_t \middle| \mathcal{F}_t)(x)$
 - Note that given $\mathcal{F}_t = (\omega_1, \omega_2, \dots, \omega_t)$, the outcome of \mathbb{F}_{t+1} is not yet fixed and is (possibly) random
 - The second equation in the definition is an "equality of two functions." It means that $\mathbb{E}\left[\mathbb{F}_{t+1}|\mathcal{F}_{t}\right](x)$ is equal to $(\mathbb{F}_{t}|\mathcal{F}_{t})$ for all $x \in \Omega$

Example

- Consider tossing a coin that gives heads with probability p, and tails with probability (1 p), independently n times
- \mathcal{F}_t is the outcome of the first t coin-tosses
- Let \mathbb{S}_t represent the number of heads in the first t coin tosses
- Note that $\mathbb{S}_t(x)$ is fixed given $\mathcal{F}_t(x)$, where $x \in \Omega$
- Note that $(\mathbb{S}_{t+1}|\mathcal{F}_t)(y) = (\mathbb{S}_t|\mathcal{F}_t)(y) + 1$ with probability p (for a random y that is consistent with $\mathcal{F}_t(x)$), else $(\mathbb{S}_{t+1}|\mathcal{F}_t)(y) = (\mathbb{S}_t|\mathcal{F}_t)(y)$
- ullet Therefore, $\mathbb{E}\left[\mathbb{S}_{t+1}|\mathcal{F}_{t}
 ight]=\left(\mathbb{S}_{t}|\mathcal{F}_{t}
 ight)\!(x)+p$
- So, the sequence $(\mathbb{S}_0, \mathbb{S}_1, \dots, \mathbb{S}_n)$ is <u>not</u> a martingale sequence with respect to the filtration $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \dots \subset \mathcal{F}_n$

Example

- Let f be a function and we consider a filtration $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$
- Let \mathbb{F}_t be the following random variable

$$\mathbb{F}_t = \mathbb{E}\left[f(\omega_1,\ldots,\omega_t,\mathbb{X}_{t+1},\ldots,\mathbb{X}_n)\right],\,$$

where $\omega_1, \ldots, \omega_t$ are the first t outcomes of $x \in \Omega$

- ullet First, prove that \mathbb{F}_t is \mathcal{F}_t measurable
- Finally, prove that $(\mathbb{F}_0, \dots, \mathbb{F}_n)$ is a martingale with respect to the filtration $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \dots \subset \mathcal{F}_n$